Conventional closed-world information extraction (IE) approaches rely on human ontologies to define the scope for extraction. As a result, such approaches fall short when applied to new domains. This calls for systems that can automatically infer new types from given corpora, a task which we refer to as type discovery. To tackle this problem, we introduce the idea of type abstraction, where the model is prompted to generalize and name the type. Then we use the similarity between inferred names to induce clusters. Observing that this abstraction-based representation is often complementary to the entity/trigger token representation, we set up these two representations as two views and design our model as a co-training framework. Our experiments on multiple relation extraction and event extraction datasets consistently show the advantage of our type abstraction approach. Code available at https://github.com/raspberryice/type-discovery-abs.
translated by 谷歌翻译
Although substantial efforts have been made using graph neural networks (GNNs) for AI-driven drug discovery (AIDD), effective molecular representation learning remains an open challenge, especially in the case of insufficient labeled molecules. Recent studies suggest that big GNN models pre-trained by self-supervised learning on unlabeled datasets enable better transfer performance in downstream molecular property prediction tasks. However, they often require large-scale datasets and considerable computational resources, which is time-consuming, computationally expensive, and environmentally unfriendly. To alleviate these limitations, we propose a novel pre-training model for molecular representation learning, Bi-branch Masked Graph Transformer Autoencoder (BatmanNet). BatmanNet features two tailored and complementary graph autoencoders to reconstruct the missing nodes and edges from a masked molecular graph. To our surprise, BatmanNet discovered that the highly masked proportion (60%) of the atoms and bonds achieved the best performance. We further propose an asymmetric graph-based encoder-decoder architecture for either nodes and edges, where a transformer-based encoder only takes the visible subset of nodes or edges, and a lightweight decoder reconstructs the original molecule from the latent representation and mask tokens. With this simple yet effective asymmetrical design, our BatmanNet can learn efficiently even from a much smaller-scale unlabeled molecular dataset to capture the underlying structural and semantic information, overcoming a major limitation of current deep neural networks for molecular representation learning. For instance, using only 250K unlabelled molecules as pre-training data, our BatmanNet with 2.575M parameters achieves a 0.5% improvement on the average AUC compared with the current state-of-the-art method with 100M parameters pre-trained on 11M molecules.
translated by 谷歌翻译
从新闻文章中提取事件的信息论点是信息提取的一个具有挑战性的问题,这需要对每个文档的全球上下文理解。尽管有关文档级提取的最新工作已经超越了单句子,并提高了端到端模型的跨句子推理能力,但它们仍然受到某些输入序列长度约束的限制,通常忽略事件之间的全局上下文。为了解决此问题,我们通过构建文档存储器存储来记录上下文事件信息,并利用它隐含,明确地帮助解码以后事件的参数,从而引入了一个新的基于全局神经生成的框架,以用于文档级事件参数提取提取文档级别的事件参数提取。经验结果表明,我们的框架的表现要优于先验方法,并且使用约束的解码设计对对抗注释的示例更为强大。 (我们的代码和资源可在https://github.com/xinyadu/memory_docie上获得研究目的。)
translated by 谷歌翻译
随着自动驾驶汽车(AV)开发的发展,对环境中乘客和代理商的安全性的担忧已经上升。涉及自主控制车辆的每个现实世界交通碰撞都使这种担忧加剧了。开源自主驾驶实现显示了具有复杂相互依赖任务的软件体系结构,这很大程度上依赖于机器学习和深层神经网络(DNN),这些任务容易受到非确定性故障和角落案例的影响。这些复杂的子系统共同履行AV的任务,同时还保持安全性。尽管在提高对这些系统的经验可靠性和信心方面正在做出重大改进,但DNN验证的固有局限性在提供AV中提供确定性安全保证方面却引起了无法克服的挑战。我们提出了协同冗余(SR),这是一种用于复杂网络物理系统的安全架构,例如AV。 SR通过将系统的任务和安全任务解耦来提供可验证的安全保证。在独立履行其主要角色的同时,部分功能多余的任务和安全任务能够相互帮助,从而协同改善合并的系统。协同安全层仅使用可验证且可分析的软件来完成其任务。与任务层的密切协调可以更轻松,更早地检测系统中的紧急故障。 SR简化了任务层的优化目标并改进了其设计。 SR提供了高性能的安全部署,尽管本质上无法验证的机器学习软件。在这项工作中,我们首先介绍SR体系结构的设计和功能,然后评估解决方案的功效,重点关注AV中障碍物存在故障的关键问题。
translated by 谷歌翻译
对障碍的看法仍然是自动驾驶汽车的关键安全问题。现实世界中的碰撞表明,导致致命碰撞的自治缺陷源于障碍物的存在。开源自主驾驶实现显示了具有复杂相互依存的深神经网络的感知管道。这些网络无法完全验证,使其不适合安全至关重要的任务。在这项工作中,我们介绍了现有的基于LIDAR的经典障碍物检测算法的安全验证。我们对该障碍检测算法的功能建立了严格的界限。考虑到安全标准,这种界限允许确定可以可靠地满足标准的激光雷达传感器属性。对于基于神经网络的感知系统,此类分析尚未实现。我们对障碍检测系统进行了严格的分析,并基于现实世界传感器数据提供了经验结果。
translated by 谷歌翻译
已经证明,提供对话模型,可以使开放域的对话更加丰富和引人入胜。现有模型将知识选择视为单独处理每个句子的句子排名或分类问题,忽略了后台文档中句子之间的内部语义连接。在这项工作中,我们建议自动将背景知识文档转换为文档语义图,然后在此类图上执行知识选择。我们的文档语义图通过使用句子节点来保留句子级信息,并提供句子之间的概念连接。我们共同将多任务学习用于句子级别和概念级知识选择,并表明它改善了句子级别的选择。我们的实验表明,我们的基于语义图的知识选择改进了知识选择任务和Holle的端到端响应生成任务的句子选择基线,并改善了WOW中看不见的主题的概括。
translated by 谷歌翻译
We propose P4E, an identify-and-localize event detection framework that integrates the best of few-shot prompting and structured prediction. Our framework decomposes event detection into an identification task and a localization task. For the identification task, which we formulate as multi-label classification, we leverage cloze-based prompting to align our objective with the pre-training task of language models, allowing our model to quickly adapt to new event types. We then employ an event type-agnostic sequence labeling model to localize the event trigger conditioned on the identification output. This heterogeneous model design allows P4E to quickly learn new event types without sacrificing the ability to make structured predictions. Our experiments demonstrate the effectiveness of our proposed design, and P4E shows superior performance for few-shot event detection on benchmark datasets FewEvent and MAVEN and comparable performance to SOTA for fully-supervised event detection on ACE.
translated by 谷歌翻译
尽管有无数的同伴审查的论文,证明了新颖的人工智能(AI)基于大流行期间的Covid-19挑战的解决方案,但很少有临床影响。人工智能在Covid-19大流行期间的影响因缺乏模型透明度而受到极大的限制。这种系统审查考察了在大流行期间使用可解释的人工智能(Xai)以及如何使用它可以克服现实世界成功的障碍。我们发现,Xai的成功使用可以提高模型性能,灌输信任在最终用户,并提供影响用户决策所需的值。我们将读者介绍给常见的XAI技术,其实用程序以及其应用程序的具体例子。 XAI结果的评估还讨论了最大化AI的临床决策支持系统的价值的重要步骤。我们说明了Xai的古典,现代和潜在的未来趋势,以阐明新颖的XAI技术的演变。最后,我们在最近出版物支持的实验设计过程中提供了建议的清单。潜在解决方案的具体示例也解决了AI解决方案期间的共同挑战。我们希望本次审查可以作为提高未来基于AI的解决方案的临床影响的指导。
translated by 谷歌翻译
基于检索的对话响应选择旨在为给定多转中下文找到候选集的正确响应。基于预先训练的语言模型(PLMS)的方法对此任务产生了显着的改进。序列表示在对话背景和响应之间的匹配程度中扮演关键作用。然而,我们观察到相同上下文共享的不同的上下文响应对始终在由PLM计算的序列表示中具有更大的相似性,这使得难以区分来自负面的正响应。由此激励,我们提出了一种基于PLMS的响应选择任务的新颖\ TextBF {f} ine- \ textbf {g}下载\ textbf {g} unfrstive(fgc)学习方法。该FGC学习策略有助于PLMS在细粒中产生每个对话的更可区分的匹配表示,并进一步提高选择正反应的预测。两个基准数据集的实证研究表明,所提出的FGC学习方法一般可以提高现有PLM匹配模型的模型性能。
translated by 谷歌翻译
随着AI民主化的进展,机器学习(ML)已成功应用于边缘应用,如智能手机和自动驾驶。如今,更多的应用需要在具有极其有限的资源的微小设备上ML,如植入式心脏除颤器(ICD),其称为Tinym1。与边缘上的ML不同,有限的能量供应的Tinyml对低功率执行的需求较高。随机计算(SC)对数据表示的比特流是有价值的,因为它可以使用简单的逻辑门来执行基本的ML操作,而不是复杂的二进制加法器和乘法器。然而,由于算术单元的低数据精度和不准确性,SC通常遭受ML任务的低精度。增加现有作品中的比特流的长度可以减轻精度问题,但延迟较高。在这项工作中,我们提出了一种新的SC架构,即基于块的随机计算(BSC)。 BSC将输入划分为块,使得通过利用高数据并行性可以减少延迟。此外,提出了优化的算术单元和输出修订(我们)方案以提高精度。在它之上,设计了全局优化方法来确定块的数量,可以提高延迟功率折衷。实验结果表明,BSC可以优于现有的设计,以实现ML任务的高度超过10%,并且减少超过6倍。
translated by 谷歌翻译